Una función es
una relación entre un conjunto dado x(llamado dominio) y otro de elementos y(llamado
codo minio )de forma que cada elemento x del dominio le corresponde un único elementó(x)
el codo minio ( los que forman el recorrido también llamado rango o habito
Dominio y rango de una función
Como ya vimos, el dominio de una función es el conjunto de valores para los cuales la función está definida; es decir, son todos los valores que puede tomar la variable independiente (la x).
Por ejemplo la función f(x) = 3x2 – 5x está definida para todo número real (x puede ser cualquier número real). Así el dominio de esta función es el conjunto de todos los números reales.
En cambio, la función tiene como dominio todos los valores de x para los cuales −1< x < 2, porque aunque pueda tomar cualquier valor real diferente de –2, en su definición determina en qué intervalo está comprendida.
Si el dominio no se específica, debe entenderse que el dominio incluye a todos los números reales para los cuales la función tiene sentido.
En el caso de la función , el dominio de esta función son todos los números reales mayores o iguales a –3, ya que x + 3 debe ser mayor o igual que cero para que exista la raíz cuadrada.
Como resumen, para determinar el dominio de una función, debemos considerar lo siguiente:
Si la función tiene radicales de índice par, el dominio está conformado por todos los números reales para los cuales la cantidad subradical sea mayor o igual a cero.
Si la función es un polinomio; una función de la forma f(x) = a0 + a1x + a2x2 +...+ anxn (donde a0, a1, a2,..., an son constantes y nun entero no negativo), el dominio está conformado por el conjunto de todos los números reales.
Si la función es racional; esto es, si es el cociente de dos polinomios, el dominio está conformado por todos los números reales para los cuales el denominador sea diferente de cero.
El rango (recorrido o ámbito) es el conjunto formado por todas las imágenes; es decir, es el conjunto conformado por todos los valores que puede tomar la variable dependiente; estos valores están determinados además, por el dominio de la función.
CLASIFICACIÓN DE FUNCIONES
Funciones algebraicas
En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2
Funciones implícitas
Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0
Funciones polinómicas
Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +··· + anxn
Su dominio es , es decir, cualquier número real tiene imagen.
Funciones constantes
El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.
Funciones polinómica de primer grado
f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Función afín.
Función lineal.
Función identidad.
Funciones cuadráticas
f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
Funciones a trozos
Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones en valor absoluto.
Función parte entera de x.
Función mantisa.
Función signo.
Funciones racionales
El criterio viene dado por un cociente entre polinomios:
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.
Funciones radicales
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.
Funciones trascendentes
La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.
Función exponencial
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ax se llama función exponencial de base a y exponente x.
Funciones logarítmicas
La función logarítmica en base a es la función inversa de la exponencial en base a.
Funciones trigonométricas
Función seno
f(x) = sen x
Función coseno
f(x) = cos x
Función tangente
f(x) = tg x
Función cosecante
f(x) = cosec x
Función secante
f(x) = sec x
Función cotangente
f(x) = cotg x
Operaciones con funciones
Función Suma
Si f(x) y g(x) son dos
funciones, entonces la función suma esta dada por
( f + g ) ( x ) = f (x) + g
(x)
Ejemplo 1 Si f (x) = 2x + 1 y h (x) = |x| entonces:
( h + f )(x) = h (x) + f (x) = |x| + 2x + 1
( h + f )(2) = h (2) + f (2) = |2| + 2 ( 2 ) + 1= 7
Función Diferencia
Si f(x) y g(x) son dos funciones, entonces la función
diferencia esta dada por
( f - g ) ( x ) = f (x) - g (x)
Ejemplo
2 Si f (x) = 2x + 1, g (x) = x2 entonces:
( f - g )( x ) = f (x) - g (x) = 2x + 1 - x2 = 1 + 2x - x2
( f - g )(- 1) = f (- 1) - g (- 1) = 2 ( -1) + 1 - ( -1)2 = -2 + 1 - 1 = - 2
Función Producto
Si f(x) y g(x) son dos funciones, entonces la función
producto esta dada por
( f g ) ( x ) = f
(x) g (x)
Ejemplo 3 Si g (x) = x2 y h (x) = x - 2 entonces:
( h • g )(x) = h (x) • g (x) = ( x - 2 ) x2 = x3 – 2x2
( h • g )(5) = h (5) • g (5) = ( 5 - 2 ) ( 5 )2 = 3 (25) = 75
Función Cociente
Si f(x) y g(x) son dos funciones, entonces la función
cociente esta dada por
Ejemplo 4 Si f (x) = 2x + 1, g (x) = x 2 entonces:
1.
en el siguiente link podrás encontrar algunos ejercicios para poder complementar tu investigación suerte y vamos tu puedes
ejercicios
ehehe Bien Juan, pero a mi parecer le pusiste mucha de muchisima informacion! http://estusiasmoenjund.blogspot.mx/
ResponderEliminarEntras a mi blog & comentas porfiis :)